O.P.Code: 18EE0231 R18 H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech IV Year I Semester Supplementary Examinations June-2024 NEURAL NETWORKS AND FUZZY LOGIC

(Electrical and Electronics Engineering)

Time: 3 Hours			Iax. Marks: 60		
PART-A					
		(Answer all the Questions $5 \times 2 = 10$ Marks)			
1	a	List out the learning mechanisms used in Artificial Neural Networks.	CO1	L1	2M
	b	Define learning rate.	CO ₂	L1	2M
	c	Define associative memory.	CO ₃	L1	2M
	d	Give different ways of assigning membership function.	CO ₄	L1	2M
	e	Give three defuzzyfication methods.	CO5	L1	2M
		<u>PART-B</u>			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2		Explain organization of human brain.	CO ₁	L2	5M
	b	Discuss the functioning of biological neuron.	CO ₁	L2	5M
_		OR			
3		Explain types of activation function & Explain Neural dynamics.	CO ₁	L2	10M
		UNIT-II			
4		Explain ANN approach to load forecasting problem.	CO ₂	L2	10M
_		OR			
5	a	Explain why single layer perceptron network couldn't solve even EX-OR problem.	CO ₂	L2	5M
	h	Derive the equation for weight change for discrete perceptron network.	CO2	т 2	EN #
		UNIT-III	CO2	L2	5M
6	a	Discuss the concept hamming distance.	CO ₃	L2	5M
	b	Explain how Associative memories work based on hamming distance.	CO ₃	L2	5M
_		OR			
7		Explain how noisy patterns are recognized in auto associative memory with an example.	CO ₃	L2	10M
		UNIT-IV			
8		Explain Composition operation performed on fuzzy relation with	COA	L2	10M
		example.	C04	LL	TOWL
		OR			
9	a	Explain Operations performed on crisp sets.	CO4	L2	5M
		Give the properties of crisp sets.	CO4	L2	5M
		UNIT-V			01/1
10		Explain the process of fuzzification in fuzzy logic.	CO5	L2	10M
		OR			TOME
11	a	List out different defuzzication methods available.	CO ₅	L1	4M
	b	Discuss any one fuzzy logic application in electrical engineering.	CO ₅	L2	6M
		•			